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ABSTRACT 
 

 Simplified kinetic schemes for Jet-A and methane fuels were developed to be 
used in numerical combustion codes, such as the National Combustor Code (NCC) that is 
being developed at Glenn.  These kinetic schemes presented here result in a correlation 
that gives the chemical kinetic time as a function of initial overall cell fuel/air ratio, 
pressure and temperature.  The correlations would then be used with the turbulent mixing 
times to determine the limiting properties and progress of the reaction.  

A similar correlation was also developed using data from the NASA�s Chemical 
Equilibrium Applications (CEA) code to determine the equilibrium concentration of 
carbon monoxide as a function of fuel air ratio, pressure and temperature.  

The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate 
constants for each species in a kinetic scheme for finite kinetic rates.  These reaction rates 
and the values obtained from the equilibrium correlations were then used to calculate the 
necessary chemical kinetic times.  Chemical kinetic time equations for fuel, carbon 
monoxide and NOx were obtained for both Jet-A fuel and methane.  
 
Introduction 

Reaction rates are kinetically limited at low temperatures and mixing limited at 
very high temperatures. According to the Magnussen model (reference 1), the fuel 
oxidation rate will be determined by the maximum of either the kinetic time or the 
turbulent mixing times of the fuel and air. However, for large numerical solutions it is 
very tedious to use complete classical calculations to compare both the kinetic and 
turbulent mixing times to determine the region of the reaction. Conventional chemical 
kinetic schemes are extremely time consuming for two and three dimensional computer 
calculations for combustors. Large mechanisms with many intermediate species and very 
fast radical reactions cause the equations to be stiff (extremely fast compared to the 
overall rate, requiring a large number of small time steps), making them very difficult to 
integrate.  Calculations for these extensive mechanisms are repetitive and complex. Using 
the simplified kinetic scheme developed here to calculate the three chemical kinetic times 
greatly reduces the amount of time required to compare kinetic reaction times with 
turbulent mixing times and will reduce the time required to obtain a converged solution. 
The advantage of computing the chemical kinetic time for only the species of interest is 
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that we have only the differential equations of interest to solve, resulting in a much 
smaller set of equations.    

This method is for use in Computational Fluid Dynamics (CFD) calculations 
where chemical kinetics is important. The current version of NCC requires the user to 
decide to use either chemical kinetics or the turbulent mixing rates. Following 
conventional methods would not allow for the calculation of both in a reasonable amount 
of time. The derived method allows for a quick and easy comparison over the complete 
spectrum of conditions. This scheme is intended for use in numerical combustion codes, 
but it can also be used as a quick and accurate method to calculate chemical reaction 
rates.   

We have also curve fitted the equilibrium concentrations of CO, O2, and NOx 
using data generated by the NASA Chemical Equilibrium Application code (CEA). The 
CO equilibrium correlation was then used in the calculation of the chemical kinetic time. 
Although this research focused on Jet-A Fuel and methane, this method may be used for 
any system. Jet-A fuel was represented as C12H23 , using Krishna Kundu�s twenty three 
step mechanism (reference 2 and 3). GLSENS (reference 4) was used to integrate the 
system of equations, at over 400 conditions to derive the rate expressions. It may be 
reasoned that the presented equations are only as good as the overall mechanism that 
calculates the data. However, performing the calculations in the conventional manner is 
also only as good as the mechanism equations and constants that go into them.  
 
Simple Time Model 
 The simple model derived here is to be used with the Magnussen mixing model of 
combustion (reference 1). The turbulent mixing time is shown as a function of the 
reaction�s turbulent kinetic energy and dissipation rate. 
 

 Net rate     ),,( kinetic
f

oxygen
fuelr r

y
k

Ay
k

Amin ϖεεϖ =  (1) 

Where 
εA

k  equals the turbulent mixing time, τm.   The mixing constant, A, is usually 

given as 4.0. The factor 
kineticϖ

fuely  is the chemical kinetic time τc. 

 
In order to obtain the chemical source term rϖ , a comparison is made of the mixing rate, 

mτ
1   and the chemical kinetic rate

cτ
1

, and the lowest rate or the longest time is used in 

the expression; see Figure 1.  This may also be represented by the following relationship: 
 
 τ   =   max (τm, τc) (2) 
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Model Equations 
 
 The following equations can be used to model the chemical system.  
    

τFuel 
Fuel   +  O2      CO +  H2O (S1) 
  

 

CO     + 
2
1 O2                                                         CO2                                                             (S2) 

 
 

 N2   +   O2  2NO                            (S3) 
 
 
The following first order reaction was used to represent the rate of fuel burning. 

(In this report, t and τ are given in milliseconds, while concentrations are given in 
gmoles/cc): 

 
 

 (3) 
 

 
The fuel concentration is then represented by a simple exponential decay 

expression, where F0 is the initial fuel concentration.  
 
 
 (4) 
 
 
The carbon monoxide reaction rate was represented by Equations (5) and (5a). The fuel 
concentration is multiplied by a factor of 12 because the Jet-A fuel takes the formula 
C12H23. Equation (5b) is the solution to the differential equation showing the CO 
concentration as a function of initial fuel concentration, CO equilibrium concentration 
and the chemical kinetic times. 
 
 (5) 
 
 
and 
 

 
COτ

CO
dt

2dCO
=  (5a) 

 



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
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 Since CO is an intermediate species going towards equilibrium, it is difficult to 
precisely determine its chemical kinetic time. At long times if CO equilibrium differs 
from the system equilibrium large errors are generated as dCO/dt goes to zero or: 
 

 .
0

error
dCO/dt

COCOτ e
CO ⇒

−=  

 
A more robust procedure was to use equation (5a). Then 
 

 .
/dtdCO

COτ
2

CO =  

 
 This expression was used for CH4, because Coe >> CO. However, the use of COe 
and τCO in NCC calculations with equation (5) and (5b) should provide the correct limits 
for CO in the calculation. 
 
 Finally, the nitrogen oxide formation rate, a species important for combustor 
emissions, was modeled as a simple zero order expression.   
 
     or             (6) 
 
 
 
Equilibrium Correlations 
  A correlation was needed to represent the CO equilibrium concentration as a 
function of overall cell fuel/air ratio, pressure and temperature. Equilibrium data was 
generated using the NASA Chemical Equilibrium Applications (CEA) program of 
reference 5. A total of three hundred cases were computed and then correlated using 
Excel. The following three possible correlations were tested. Table 1 shows the similarity 
between coefficients b and c for the three equations.  
 

 exp[d/T]cPbA(f/a)eqCO =  (7) 

 exp[dT]cPbA(f/a)eqCO =  (8) 

 dTcPbA(f/a)eqCO =  (9) 

xNO

x
dt

dNO
τ

1=
xNO

x
tNO

τ
=
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Table 1. Comparison of Equilibrium Coefficients from Three Correlations 
 A b c d 
Equation 7 4.43 1.69 0.513 -31840 
Equation 8 1.37e-15 1.71 0.475 9.54e-3 
Equation 9 2.13e-69 1.27 0.492 18.7 
 

 Multiple linear regression in a Microsoft Excel spreadsheet was used to determine 
the coefficients A, b, c, and d for each equation. (A detailed procedure on multiple linear 
regression can be found in Appendix A). Values for the equilibrium CO concentration 
were then calculated at each set of conditions using the above correlations and compared 
to the experimental values. All three equations produced similar results with a high 
correlation coefficient greater than 0.995, as seen in Figure 2. Equation 7 was chosen in 
this report for all temperature relations because of its similarity to the activation energy 

relation, RT
E

e
−

. Comparing this to the exponential term of equation 7 results in the 
approximation of coefficient d as E/R.  

This temperature function was used for all correlations in this report. The entire 
Jet-A CEA data set was initially regressed and a parity plot showing the difference 
between experimental and calculated values was generated. However, the data behaved 
differently after reaching an equivalence ratio of one. Therefore the data was split into a 
lean group (fuel air ratio < 0.068) and a rich group (fuel air ratio ≥ 0.068) and regressed 
again, resulting in two separate correlations.  Figures 3 and 4 are parity plots of the CO 
equilibrium correlations that show the similarity of the experimental and predicted 
values. The x-axis contains equilibrium values from CEA and the y-axis contains values 
calculated at the same set of conditions using the equilibrium correlations.  Figure 4 
showed more scatter at stoichiometric equivalence ratios than the lean side.  
The same procedure was used to develop correlations for the equilibrium values of 
oxygen and NOx. The CO equilibrium correlations for both Jet-A fuel and methane may 
be found in Table 2. The NOx and oxygen equilibrium correlations may be found in 
Appendix B.  Table 2 shows the similarity between the coefficients of Jet-A and methane 
for both the lean and rich cases.  

 
Table 2. Carbon Monoxide Equilibrium Correlations 

 Lean 
f/a < 0.068 

Rich 
f/a ≥ 0.068 

Jet-A 
Fuel 



 −







= )31840exp(43.4 513.0

69.1

T
P

a
fCOeq  



 −







= − )969exp(85.5 961.0

82.3
3

T
P

a
feCOeq  

 
 f/a < 0.059 f/a ≥ 0.059 

Methane 




 −






= )31797exp(98.4 512.0

74.1

T
Pa

fCOeq

 





 −






= − )1235exp(11.1 964.0

90.3
2

T
Pa

feCOeq
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Determination of the Chemical Kinetic Time 
With the approach derived here, a simple direct comparison can be made between 

the mixing and chemical kinetic times and the minimum rate used for the computation as 
shown in Figure 1. The integration was performed for 400 cases shown below for Jet-A 
and methane fuels.  

Pressure 1 to 40 atmospheres     (increments of 10 atmospheres) 
Temperature 1000 to 2500K      (increments of 500K) 
Equivalence ratios 0.3 to 1.0      (increments of 0.1) 
         1.0 to 2.0      (increments of 0.1) 
 
Calculations were performed isothermally using GLSENS for each condition over 

a time of 0 to 10 milliseconds. By computing the progress isothermally, the chemical rate 
constants were fixed and the chemical kinetic time was determined as a unique value of 
temperature, pressure and initial fuel/air ratio. GLSENS computes the cumulative rate of 
reaction for each species from all equations in the mechanism, so it is a simple matter to 
then compute the chemical kinetic time for each species. For the fuel equation (3) the 
chemical kinetic time is given as 
 

 








−=

dt
dFuel
Fuel

fτ  (10) 

 
This simple calculation was done using additional steps in the GLSENS code (see 
Appendix E). Values for the chemical kinetic time were calculated for each concentration 
at each output time and each set of conditions. The trapezoidal rule (using 1/τ ) was then 
used to calculate the best value of the chemical kinetic time for each set of conditions and 
the final numbers regressed over the complete set of cases to obtain the final correlation. 
The fuel, CO, and NOx correlations are of the same form as the equilibrium correlations.  

 A correlation could then be developed that determines the chemical kinetic time 
as a function of the overall cell fuel air ratio, pressure and temperature. The data was 
correlated using the same method as previously mentioned for the equilibrium equations. 
Two correlations for each of the three species, one for the lean side and one for the rich 
side, were obtained.   
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Jet-A Mechanism 
The following is GLSENS input for the 23 step, 16 species mechanism from Krishna 
Kundu that was used for the Jet-A calculations.  
 
  Jet-A  Mechanism  used in GLSENS  
 &RTYPE   GLOBAL=.TRUE., GRONLY=.FALSE.,   &END 
   H2      +   OH       =   H2O     +   H           1.17E+11    1.1    3626. 
   H2      +   O        =   H       +   OH          2.50E+15     0.       6000. 
   H       +   O2       =   O       +   OH          4.00E+14     0.      18000. 
   N2      +   O2       >2.0O       +   N2          1.00E+18     0.     122239. 
   H2      +2.0O        >   O2      +   H2          5.00E+17     .5          0. 
   H2      +2.0H        =2.0H2                      4.00E+20   -1.           0. 
   H       +   O2       =   HO2                     1.00E+15   -1.1          0. 
   O       +   HO2      =   OH      +   O2          1.50E+13     0.          0. 
   H       +   HO2      =   H2      +   O2          1.50E+13     0.          0. 
   CO      +   OH       =   CO2     +   H           4.17E+11    0.0       1000. 
   CO      +   HO2      >   CO2     +   OH          5.80E+13     0.      22934. 
   CH      +   O        =   CO      +   H           1.00E+10     .5          0. 
   CH      +   NO       =   CO      +   NH          1.00E+11     0.          0. 
   CH      +   O2       =   CO      +   OH          3.00E+10     0.          0. 
   C2H2    +   O2       =2.0CO      +   H           3.00E+12     0.      49000. 
   N2      +2.0N        =   N2      +   N2          1.00E+15     0.          0. 
   N       +   O2       =   NO      +   O           6.30E+09    1.        6300.  
   N       +   OH       =   NO      +   H           3.00E+13   0.            0.   
   NH      +   O        =   NO      +   H           1.50E+13    0.           0.   
   NH      +   NO       =   N2      +   OH          2.00E+15   -.8           0.      
 
    O       +    N2      +    HO2      >2.00NO      +    H       +    O          
   .1        .5     1.          1.50E+07   1.      45900.                        
             2.00NO      +    H        >    N2      +    HO2                     
            1.1     1.          2.50E+10   .16      8000.                        
                 N2      +    O        >    NO      +    N                       
             .5     1.          4.75E+10   .29     75010.                        
                 N       +    NO       >    N2      +    O                       
            1.      1.          3.00E+12   .2          0.                        
    H2      +    N2      +2.00CH       >2.00CH      +2.00NH                      
   .1        1.     1.          1.00E+16   0.      78000.                        
             2.00NH      +2.00CH       >2.00CH      +    N2      +    H2         
            2.      1.          1.95E+15   0.          0.                        
                 N2      +    C12H23   >6.00C2H2    +11.0H       +    N2         
             .8     .8          2.50E+09   .0      30000. 
                 N2      +    C12H23   >12.0CH      +11.0H       +    N2         
             .8     .8          2.50E+10   .0      30000. 
                                                                                 

 
 For the last three body mechanism step the rate is given by  
2.5x1010e-30000/RT N2

0.8C12H230.8 in an irreversible step.  
 

Note the fuel is C12H23. The last two steps are irreversible fuel breakup reactions 
to CH and C2H2. The methane reaction must react through free radical attack of O and 
OH.  

Note, some reactions are bimolecular and some are trimolecular expressions. The 
code follows the method of LSENS developed by Radhakrishnan (Reference 6). 
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Jet-A Results 

The chemical kinetic time equations for Jet-A fuel may be found in Table 3.  
 
 

Table 3. Jet -A Chemical Kinetic Time Correlations 
Species Lean Rich 

Fuel ]
T

14446exp[(P)(f/a)3.17eτ 0.6780.2725
fuel

−−=  ]
T

15586exp[0.639(P)0.596(f/a)53.48efuelτ −−=

CO ]
T

9535exp[0.743(P)0.349)0.0591(f/aCOτ −−= ]
T

8009exp[0.781(P)0.570)0.0654(f/aCOτ −−=  

NOx ]
T

27513exp[(P)786(f/a)τ 1.560.28
NOx

−−=  ]
T

26288exp[(P)981(f/a)τ 1.610.372
NOx

−−=  

 
 

These correlations show that the chemical kinetic time decreases with increasing 
pressure, resulting in a faster reaction. Parity plots for each chemical kinetic time 
equation were generated to show how close the simple model value for the chemical 
kinetic time was to the expected value. These plots can be found in Figures 5-10. The fuel 
and NOx plots show a strong correlation, however there is a greater amount of scatter in 
the CO plots. Figures 11-13 show the break in the chemical kinetic time function at an 
equivalence ratio of one. Concentration versus time is plotted in Figures 14-19 at 
temperatures of 1500K and 2500K for equivalence ratios of 0.5, 1.0, and 1.5. These plots 
are a comparison of the concentration given by the full mechanism and the concentration 
calculated by using the simple models. There was a fairly smooth transition between the 
lean and rich sides of the reaction.  
 Auto ignition times using the simple model and a given formula were calculated 
and compared. The auto ignition time for the simple model is based on the 
recommendation of reference 7, where the time required for ignition is for 5 percent of 
the fuel to react.  

 τ
t

oeFFuel
−

=  (11) 
 
 If  95.0=

oF
Fuel      then  051.0=τ

t    and   Fuelignitionautot τ05.0= .  (12) 

 
Note that τfuel decreases as f/a decreases. We used an f/a of 0.02 with the lean equation.  
The formula for calculating the auto ignition time for Jet-A (reference 8) is given by: 
 

 



=⋅ −

RT
eatmondsmilliP 15300exp4.3)sec( 3τ  (13) 

 
Figure 20, a plot of auto ignition time versus temperatures, shows that the auto ignition 
time given by the simple model is fairly close to the auto ignition time given by the 
accepted formula. The two curves intersect at approximately 900K and then separate. 
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This behavior could be due to the fact that the Jet-A reaction mechanism shifts after that 
temperature. Calculations for the simple model were not done at temperatures below 
1000K.  

One can use the correlations for computing premixed NOx levels. The NOx in 
parts per million (ppm) or the emission index (EI) can be computed using equation 6. 

 
 
 (14) 
 
 
τNOx in milliseconds for lean Jet-A is given by the following correlation: 
 

 













= −

−

T
27513expP

a
f786τ 1.56

0.28

NOx
 (15) 

 
At a fuel/air ratio of 0.02, a temperature of 1500K, and a pressure of 5.5 atm, 
τNOx=1.52×1010 ms. For a typical combustor, the residence time is 2 milliseconds, 
resulting in the following NOx concentration: 
 

 10101.3110101.52

2
cc

molesNOx
−×=

×
=          (16) 

 
The concentration in ppm is calculated as follows: 
 

 610

cc
molesρ

cc
molesNO

(ppm)NO
x

x ×
















=    where 5104.47
RT
Pρ −×==            (17) 

 
The NOx concentration in ppm is then 2.94. 
 
The EI may also be calculated as follows: 
 

 0.24
630
ppm

a
f

a
f1

1000gmfuel
gm

NoEI
x

=•
+

=







 (18) 

 
This result is consistent with the data.  
 
 
 
 
 

xNO
x τ

t
cc

moleNO =









NASA/TM�2003-212702 10 

Methane Equations 
  The following methane chemical kinetic time correlations were obtained: 
 

Table 4. Methane Chemical Kinetic Time Correlations 
Species Lean Rich 
Fuel ]

T
18942exp[(P)(f/a)2.11eτ 0.9870.4004

fuel
−−=  ]

T
14451exp[(P)(f/a)7.49eτ 1.00.6514

fuel
−−=

CO ]
T

2555exp[1.49(P)0.1821.20(f/a)COτ −−−=  ]
T

6795exp[1.02(P)11.0(f/a)113.03eCOτ −=  

NOx ]
T

37067exp[(P)(f/a)9.84eτ 0.9231.294
NOx

−−−= ]
T

25538exp[(P)(f/a)5.32eτ 1.706.159
NOx

−=

 
A detailed discussion of the methane results may be found in Appendix D.  
 
Conclusion 

A simplified kinetic scheme for Jet-A and methane fuels resulted in equations 
relating the chemical kinetic times  to overall  fuel air ratio, pressure and temperature. 
The chemical kinetic time equations can then be used in a numerical combustor code to 
compare the kinetic time with the turbulent mixing time.  Fairly strong Jet-A Fuel and 
methane chemical kinetic time correlations for fuel and NOx were developed. The CO 
correlation is shown to be not as strong as the others, but all of the twelve equations are 
believed to be extremely useful in the comparison of kinetic reaction and turbulent 
mixing times and in the computation of kinetic rate results.  
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APPENDIX A 
 
Performing Multiple Linear Regression on a Logarithmic Equation 
 

This regression technique may be used to develop a correlation between a 
dependent variable and one or more independent variables. First the equation to be used 
must be linearized. An example of an exponential equation used here is shown below.  
 

 





=

T
eexpDBCA dc  (Non-linear form) (19) 

 

 
T
eDdCcBA +++= )ln()ln()ln()ln(  (Linear form) (20) 

 
Columns of data containing the independent variables (natural log of C, natural 

log of D, 1/T,) and the independent variable (natural log of A) were contained in an Excel 
spreadsheet. (It is easiest to have the independent variables adjacent to each other, 
followed by the dependent variable.)  

The multiple variable regression analysis is located in the Data Analysis Toolpak. 
The Data Analysis Toolpak must be added into the spreadsheet if it is not already running 
in Excel. In order to add it, select the �Add ins� button from the Tools menu. Click on the 
Analysis Toolpak option and click OK to accept this choice. Then choose �Data Analysis� 
from the Tools menu and double click on �regression�. Click on the �Input Y Range� box 
and highlight the column that contains the logarithm of the dependent variable and press 
return. Click on the �Input X Range� box and highlight the columns containing all of the 
independent variables. (In this case ln(C),ln(D) and 1/T). Press OK to begin the 
regression. The regression data will be contained in a new worksheet. The variable 
labeled �intercept� will be equal to the natural log of coefficient B. The remaining 
coefficients (c,d, and e) will be given as X Variable 1,X Variable 2 and X Variable 3 
respectively. This process is quick and accurate for Excel 2002 and was used for all 
equations given in this report.  
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APPENDIX B 
 
Equilibrium Results 

The following equilibrium correlations for oxygen and nitrogen oxide were 
developed in addition to the CO equilibrium values given previously. (Pressure is in atm, 
Temperature in K, and all concentrations in moles/cc). The following tables show the 
similarity between the Jet-A and methane equilibrium coefficients.  

 
Table 5. Jet-A Fuel Equilibrium Correlations 
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Table 6. Methane Equilibrium Correlations 
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APPENDIX C 
 
Methane Mechanism 

The following mechanism was used for the methane calculations.  It is from 
GRI.Mech 2.1 (from the GRI.mech website), and it contains 46 species and 247 
reactions.  The Low/Troe pressure dependence was removed, as this feature was not 
supported by GLSENS. Only k infinity at the high pressure limit was used. Also 4 
species (CH2 (s), NNH, NCO and HCNN) were removed because they were not included 
in the kinetic thermodynamic data set. Note that the mechanism format below was 
converted to the GLSENS format prior to using it in GLSENS.  
 
 
! GRI-Mech Version 2.1  released 9/6/95  CHEMKIN-II 
format  
! See README21 file at anonymous FTP site unix.sri.com, directory 
gri; 
! WorldWideWeb home page through 
http://www.gri.org/tech/res/  
!   for additional information, contacts, and disclaimer   
REACTIONS      
2O+M<=>O2+M                              1.200E+17   -1.000        
.00  
H2/ 2.40/ H2O/15.40/ CH4/ 2.00/ CO/ 1.75/ CO2/ 3.60/ C2H6/ 3.00/  
O+H+M<=>OH+M                             5.000E+17   -1.000        .00 
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
O+H2<=>H+OH                              5.000E+04    2.670    6290.00 
O+HO2<=>OH+O2                            2.000E+13     .000        .00 
O+H2O2<=>OH+HO2                          9.630E+06    2.000    4000.00 
O+CH<=>H+CO                              5.700E+13     .000        .00  
O+CH2<=>H+HCO                            8.000E+13     .000        .00 
O+CH2(S)<=>H2+CO                         1.500E+13     .000        .00 
O+CH2(S)<=>H+HCO                         1.500E+13     .000        .00 
O+CH3<=>H+CH2O                           8.430E+13     .000        .00 
O+CH4<=>OH+CH3                           1.020E+09    1.500    8600.00 
O+CO+M<=>CO2+M                           6.020E+14     .000    3000.00 
H2/2.00/ O2/6.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/3.50/ C2H6/3.00/  
O+HCO<=>OH+CO                            3.000E+13     .000        .00 
O+HCO<=>H+CO2                            3.000E+13     .000        .00 
O+CH2O<=>OH+HCO                          3.900E+13     .000    3540.00 
O+CH2OH<=>OH+CH2O                        1.000E+13     .000        .00 
O+CH3O<=>OH+CH2O                         1.000E+13     .000        .00 
O+CH3OH<=>OH+CH2OH                       3.880E+05    2.500    3100.00 
O+CH3OH<=>OH+CH3O                        1.300E+05    2.500    5000.00 
O+C2H<=>CH+CO                            5.000E+13     .000        .00 
O+C2H2<=>H+HCCO                          1.020E+07    2.000    1900.00 
O+C2H2<=>OH+C2H                          4.600E+19   -1.410   28950.00 
O+C2H2<=>CO+CH2                          1.020E+07    2.000    1900.00 
O+C2H3<=>H+CH2CO                         3.000E+13     .000        .00 
O+C2H4<=>CH3+HCO                         1.920E+07    1.830     220.00 
O+C2H5<=>CH3+CH2O                        1.320E+14     .000        .00 
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O+C2H6<=>OH+C2H5                         8.980E+07    1.920    5690.00 
O+HCCO<=>H+2CO                           1.000E+14     .000        .00 
O+CH2CO<=>OH+HCCO                        1.000E+13     .000    8000.00 
O+CH2CO<=>CH2+CO2                        1.750E+12     .000    1350.00 
O2+CO<=>O+CO2                            2.500E+12     .000   47800.00 
O2+CH2O<=>HO2+HCO                        1.000E+14     .000   40000.00 
H+O2+M<=>HO2+M                           2.800E+18    -.860        .00 
O2/ .00/ H2O/ .00/ CO/ .75/ CO2/1.50/ C2H6/1.50/ N2/ .00/   
H+2O2<=>HO2+O2                           3.000E+20   -1.720        .00 
H+O2+H2O<=>HO2+H2O                       9.380E+18    -.760        .00 
H+O2+N2<=>HO2+N2                         3.750E+20   -1.720        .00 
H+O2<=>O+OH                              8.300E+13     .000   14413.00 
2H+M<=>H2+M                              1.000E+18   -1.000        .00  
H2/ .00/ H2O/ .00/ CH4/2.00/ CO2/ .00/ C2H6/3.00/    
2H+H2<=>2H2                              9.000E+16    -.600        .00  
2H+H2O<=>H2+H2O                          6.000E+19   -1.250        .00 
2H+CO2<=>H2+CO2                          5.500E+20   -2.000        .00 
H+OH+M<=>H2O+M                           2.200E+22   -2.000        .00 
H2/ .73/ H2O/3.65/ CH4/2.00/ C2H6/3.00/     
H+HO2<=>O+H2O                            3.970E+12     .000     671.00 
H+HO2<=>O2+H2                            2.800E+13     .000    1068.00 
H+HO2<=>2OH                              1.340E+14     .000     635.00 
H+H2O2<=>HO2+H2                          1.210E+07    2.000    5200.00 
H+H2O2<=>OH+H2O                          1.000E+13     .000    3600.00 
H+CH<=>C+H2                              1.100E+14     .000        .00  
H+CH2(+M)<=>CH3(+M)                      2.500E+16    -.800        .00 
     LOW  /  3.200E+27   -3.140   1230.00/    
     TROE/   .6800   78.00  1995.00  5590.00 /   
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
H+CH2(S)<=>CH+H2                         3.000E+13     .000        .00 
H+CH3(+M)<=>CH4(+M)                      1.270E+16    -.630     383.00 
     LOW  /  2.477E+33   -4.760   2440.00/    
     TROE/   .7830   74.00  2941.00  6964.00 /   
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
H+CH4<=>CH3+H2                           6.600E+08    1.620   10840.00 
H+HCO(+M)<=>CH2O(+M)                     1.090E+12     .480    -260.00 
     LOW  /  1.350E+24   -2.570   1425.00/    
     TROE/   .7824  271.00  2755.00  6570.00 /   
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
H+HCO<=>H2+CO                            7.340E+13     .000        .00 
H+CH2O(+M)<=>CH2OH(+M)                   5.400E+11     .454    3600.00 
     LOW  /  1.270E+32   -4.820   6530.00/    
     TROE/   .7187  103.00  1291.00  4160.00 /   
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
H+CH2O(+M)<=>CH3O(+M)                    5.400E+11     .454    2600.00 
     LOW  /  2.200E+30   -4.800   5560.00/    
     TROE/   .7580   94.00  1555.00  4200.00 /   
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H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
H+CH2O<=>HCO+H2                          2.300E+10    1.050    3275.00 
H+CH2OH(+M)<=>CH3OH(+M)                  1.800E+13     .000        .00 
     LOW  /  3.000E+31   -4.800   3300.00/    
     TROE/   .7679  338.00  1812.00  5081.00 /   
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
H+CH2OH<=>H2+CH2O                        2.000E+13     .000        .00 
H+CH2OH<=>OH+CH3                         1.200E+13     .000        .00 
H+CH2OH<=>CH2(S)+H2O                     6.000E+12     .000        .00 
H+CH3O(+M)<=>CH3OH(+M)                   5.000E+13     .000        .00 
     LOW  /  8.600E+28   -4.000   3025.00/    
     TROE/   .8902  144.00  2838.00 45569.00 /   
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
H+CH3O<=>H+CH2OH                         3.400E+06    1.600        .00 
H+CH3O<=>H2+CH2O                         2.000E+13     .000        .00 
H+CH3O<=>OH+CH3                          3.200E+13     .000        .00 
H+CH3O<=>CH2(S)+H2O                      1.600E+13     .000        .00 
H+CH3OH<=>CH2OH+H2                       1.700E+07    2.100    4870.00 
H+CH3OH<=>CH3O+H2                        4.200E+06    2.100    4870.00 
H+C2H(+M)<=>C2H2(+M)                     1.000E+17   -1.000        .00 
     LOW  /  3.750E+33   -4.800   1900.00/    
     TROE/   .6464  132.00  1315.00  5566.00 /   
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
H+C2H2(+M)<=>C2H3(+M)                    5.600E+12     .000    2400.00 
     LOW  /  3.800E+40   -7.270   7220.00/    
     TROE/   .7507   98.50  1302.00  4167.00 /   
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
H+C2H3(+M)<=>C2H4(+M)                    6.080E+12     .270     280.00 
     LOW  /  1.400E+30   -3.860   3320.00/    
     TROE/   .7820  207.50  2663.00  6095.00 /   
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
H+C2H3<=>H2+C2H2                         3.000E+13     .000        .00 
H+C2H4(+M)<=>C2H5(+M)                    1.080E+12     .454    1820.00 
     LOW  /  1.200E+42   -7.620   6970.00/    
     TROE/   .9753  210.00   984.00  4374.00 /   
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
H+C2H4<=>C2H3+H2                         1.325E+06    2.530   12240.00 
H+C2H5(+M)<=>C2H6(+M)                    5.210E+17    -.990    1580.00 
     LOW  /  1.990E+41   -7.080   6685.00/    
     TROE/   .8422  125.00  2219.00  6882.00 /   
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
H+C2H5<=>H2+C2H4                         2.000E+12     .000        .00 
H+C2H6<=>C2H5+H2                         1.150E+08    1.900    7530.00 
H+HCCO<=>CH2(S)+CO                       1.000E+14     .000        .00 
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H+CH2CO<=>HCCO+H2                        5.000E+13     .000    8000.00 
H+CH2CO<=>CH3+CO                         1.130E+13     .000    3428.00 
H+HCCOH<=>H+CH2CO                        1.000E+13     .000        .00 
H2+CO(+M)<=>CH2O(+M)                     4.300E+07    1.500   79600.00 
     LOW  /  5.070E+27   -3.420  84350.00/    
     TROE/   .9320  197.00  1540.00 10300.00 /   
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
OH+H2<=>H+H2O                            2.160E+08    1.510    3430.00 
2OH(+M)<=>H2O2(+M)                       7.400E+13    -.370        .00 
     LOW  /  2.300E+18    -.900  -1700.00/    
     TROE/   .7346   94.00  1756.00  5182.00 /   
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
2OH<=>O+H2O                              3.570E+04    2.400   -2110.00 
OH+HO2<=>O2+H2O                          2.900E+13     .000    -500.00 
OH+H2O2<=>HO2+H2O                        1.750E+12     .000     320.00 
 DUPLICATE      
OH+H2O2<=>HO2+H2O                        5.800E+14     .000    9560.00 
 DUPLICATE      
OH+C<=>H+CO                              5.000E+13     .000        .00  
OH+CH<=>H+HCO                            3.000E+13     .000        .00 
OH+CH2<=>H+CH2O                          2.000E+13     .000        .00 
OH+CH2<=>CH+H2O                          1.130E+07    2.000    3000.00 
OH+CH2(S)<=>H+CH2O                       3.000E+13     .000        .00 
OH+CH3(+M)<=>CH3OH(+M)                   6.300E+13     .000        .00 
     LOW  /  2.700E+38   -6.300   3100.00/    
     TROE/   .2105   83.50  5398.00  8370.00 /   
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
OH+CH3<=>CH2+H2O                         5.600E+07    1.600    5420.00 
OH+CH3<=>CH2(S)+H2O                      2.501E+13     .000        .00 
OH+CH4<=>CH3+H2O                         1.000E+08    1.600    3120.00 
OH+CO<=>H+CO2                            4.760E+07    1.228      70.00 
OH+HCO<=>H2O+CO                          5.000E+13     .000        .00 
OH+CH2O<=>HCO+H2O                        3.430E+09    1.180    -447.00 
OH+CH2OH<=>H2O+CH2O                      5.000E+12     .000        .00 
OH+CH3O<=>H2O+CH2O                       5.000E+12     .000        .00 
OH+CH3OH<=>CH2OH+H2O                     1.440E+06    2.000    -840.00 
OH+CH3OH<=>CH3O+H2O                      6.300E+06    2.000    1500.00 
OH+C2H<=>H+HCCO                          2.000E+13     .000        .00 
OH+C2H2<=>H+CH2CO                        2.180E-04    4.500   -1000.00 
OH+C2H2<=>H+HCCOH                        5.040E+05    2.300   13500.00 
OH+C2H2<=>C2H+H2O                        3.370E+07    2.000   14000.00 
OH+C2H2<=>CH3+CO                         4.830E-04    4.000   -2000.00 
OH+C2H3<=>H2O+C2H2                       5.000E+12     .000        .00 
OH+C2H4<=>C2H3+H2O                       3.600E+06    2.000    2500.00 
OH+C2H6<=>C2H5+H2O                       3.540E+06    2.120     870.00 
OH+CH2CO<=>HCCO+H2O                      7.500E+12     .000    2000.00 
2HO2<=>O2+H2O2                           1.300E+11     .000   -1630.00 
 DUPLICATE      
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2HO2<=>O2+H2O2                           4.200E+14     .000   12000.00 
 DUPLICATE      
HO2+CH2<=>OH+CH2O                        2.000E+13     .000        .00 
HO2+CH3<=>O2+CH4                         1.000E+12     .000        .00 
HO2+CH3<=>OH+CH3O                        2.000E+13     .000        .00 
HO2+CO<=>OH+CO2                          1.500E+14     .000   23600.00 
HO2+CH2O<=>HCO+H2O2                      1.000E+12     .000    8000.00 
C+O2<=>O+CO                              5.800E+13     .000     576.00 
C+CH2<=>H+C2H                            5.000E+13     .000        
.00  
C+CH3<=>H+C2H2                           5.000E+13     .000        .00 
CH+O2<=>O+HCO                            3.300E+13     .000        .00 
CH+H2<=>H+CH2                            1.107E+08    1.790    1670.00 
CH+H2O<=>H+CH2O                          1.713E+13     .000    -755.00 
CH+CH2<=>H+C2H2                          4.000E+13     .000        .00 
CH+CH3<=>H+C2H3                          3.000E+13     .000        .00 
CH+CH4<=>H+C2H4                          6.000E+13     .000        .00 
CH+CO(+M)<=>HCCO(+M)                     5.000E+13     .000        .00 
     LOW  /  2.690E+28   -3.740   1936.00/    
     TROE/   .5757  237.00  1652.00  5069.00 /   
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
CH+CO2<=>HCO+CO                          3.400E+12     .000     690.00 
CH+CH2O<=>H+CH2CO                        9.460E+13     .000    -515.00 
CH+HCCO<=>CO+C2H2                        5.000E+13     .000        .00 
CH2+O2<=>OH+HCO                          1.320E+13     .000    1500.00 
CH2+H2<=>H+CH3                           5.000E+05    2.000    7230.00 
2CH2<=>H2+C2H2                           3.200E+13     .000        
.00  
CH2+CH3<=>H+C2H4                         4.000E+13     .000        .00 
CH2+CH4<=>2CH3                           2.460E+06    2.000    8270.00 
CH2+CO(+M)<=>CH2CO(+M)                   8.100E+11     .500    4510.00 
     LOW  /  2.690E+33   -5.110   7095.00/    
     TROE/   .5907  275.00  1226.00  5185.00 /   
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
CH2+HCCO<=>C2H3+CO                       3.000E+13     .000        .00 
CH2(S)+N2<=>CH2+N2                       1.500E+13     .000     600.00 
CH2(S)+O2<=>H+OH+CO                      2.800E+13     .000        .00 
CH2(S)+O2<=>CO+H2O                       1.200E+13     .000        .00 
CH2(S)+H2<=>CH3+H                        7.000E+13     .000        .00 
CH2(S)+H2O(+M)<=>CH3OH(+M)               2.000E+13     .000        .00 
     LOW  /  2.700E+38   -6.300   3100.00/    
     TROE/   .1507  134.00  2383.00  7265.00 /   
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
CH2(S)+H2O<=>CH2+H2O                     3.000E+13     .000        .00 
CH2(S)+CH3<=>H+C2H4                      1.200E+13     .000    -570.00 
CH2(S)+CH4<=>2CH3                        1.600E+13     .000    -570.00 
CH2(S)+CO<=>CH2+CO                       9.000E+12     .000        .00 
CH2(S)+CO2<=>CH2+CO2                     7.000E+12     .000        .00 
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CH2(S)+CO2<=>CO+CH2O                     1.400E+13     .000        .00 
CH2(S)+C2H6<=>CH3+C2H5                   4.000E+13     .000    -550.00 
CH3+O2<=>O+CH3O                          2.675E+13     .000   28800.00 
CH3+O2<=>OH+CH2O                         3.600E+10     .000    8940.00 
CH3+H2O2<=>HO2+CH4                       2.450E+04    2.470    5180.00 
2CH3(+M)<=>C2H6(+M)                      2.120E+16    -.970     620.00 
     LOW  /  1.770E+50   -9.670   6220.00/    
     TROE/   .5325  151.00  1038.00  4970.00 /   
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
2CH3<=>H+C2H5                            4.990E+12     .100   10600.00 
CH3+HCO<=>CH4+CO                         2.648E+13     .000        .00 
CH3+CH2O<=>HCO+CH4                       3.320E+03    2.810    5860.00 
CH3+CH3OH<=>CH2OH+CH4                    3.000E+07    1.500    
9940.00 
CH3+CH3OH<=>CH3O+CH4                     1.000E+07    1.500    9940.00 
CH3+C2H4<=>C2H3+CH4                      2.270E+05    2.000    9200.00 
CH3+C2H6<=>C2H5+CH4                      6.140E+06    1.740   10450.00 
HCO+H2O<=>H+CO+H2O                       2.244E+18   -1.000   17000.00 
 DUPLICATE      
HCO+M<=>H+CO+M                           1.870E+17   -1.000   17000.00 
H2/2.00/ H2O/ .00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/  
 DUPLICATE      
HCO+O2<=>HO2+CO                          7.600E+12     .000     400.00 
CH2OH+O2<=>HO2+CH2O                      1.800E+13     .000     900.00 
CH3O+O2<=>HO2+CH2O                       4.280E-13    7.600   -3530.00 
C2H+O2<=>HCO+CO                          5.000E+13     .000    1500.00 
C2H+H2<=>H+C2H2                          4.070E+05    2.400     200.00 
C2H3+O2<=>HCO+CH2O                       3.980E+12     .000    -240.00 
C2H4(+M)<=>H2+C2H2(+M)                   8.000E+12     .440   88770.00 
     LOW  /  7.000E+50   -9.310  99860.00/    
     TROE/   .7345  180.00  1035.00  5417.00 /   
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
C2H5+O2<=>HO2+C2H4                       8.400E+11     .000    3875.00 
HCCO+O2<=>OH+2CO                         1.600E+12     .000     854.00 
2HCCO<=>2CO+C2H2                         1.000E+13     .000        .00 
N+NO<=>N2+O                              3.500E+13     .000     330.00 
N+O2<=>NO+O                              2.650E+12     .000    6400.00 
N+OH<=>NO+H                              7.333E+13     .000    1120.00 
N2O+O<=>N2+O2                            1.400E+12     .000   10810.00 
N2O+O<=>2NO                              2.900E+13     .000   23150.00 
N2O+H<=>N2+OH                            4.400E+14     .000   18880.00 
N2O+OH<=>N2+HO2                          2.000E+12     .000   21060.00 
N2O(+M)<=>N2+O(+M)                       1.300E+11     .000   59620.00 
     LOW  /  6.200E+14     .000  56100.00/    
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
HO2+NO<=>NO2+OH                          2.110E+12     .000    -480.00 
NO+O+M<=>NO2+M                           1.060E+20   -1.410        .00 
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/  
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C2H6/3.00/  
NO2+O<=>NO+O2                            3.900E+12     .000    -240.00 
NO2+H<=>NO+OH                            1.320E+14     .000     360.00 
NH+O<=>NO+H                              5.000E+13     .000        .00  
NH+H<=>N+H2                              3.200E+13     .000     
330.00  
NH+OH<=>HNO+H                            2.000E+13     .000        .00 
NH+OH<=>N+H2O                            2.000E+09    1.200        .00 
NH+O2<=>HNO+O                            4.610E+05    2.000    6500.00 
NH+O2<=>NO+OH                            1.280E+06    1.500     100.00 
NH+N<=>N2+H                              1.500E+13     .000        .00  
NH+H2O<=>HNO+H2                          2.000E+13     .000   13850.00 
NH+NO<=>N2+OH                            2.160E+13    -.230        .00 
NH+NO<=>N2O+H                            4.160E+14    -.450        .00 
NH2+O<=>OH+NH                            7.000E+12     .000        .00 
NH2+O<=>H+HNO                            4.600E+13     .000        .00 
NH2+H<=>NH+H2                            4.000E+13     .000    3650.00 
NH2+OH<=>NH+H2O                          9.000E+07    1.500    -460.00 
NNH<=>N2+H                               3.300E+08     .000        .00  
 DUPLICATE      
NNH+M<=>N2+H+M                           1.300E+14    -.110    4980.00 
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
 DUPLICATE      
NNH+O2<=>HO2+N2                          5.000E+12     .000        .00 
NNH+O<=>OH+N2                            2.500E+13     .000        .00 
NNH+O<=>NH+NO                            7.000E+13     .000        .00 
NNH+H<=>H2+N2                            5.000E+13     .000        
.00  
NNH+OH<=>H2O+N2                          2.000E+13     .000        .00 
NNH+CH3<=>CH4+N2                         2.500E+13     .000        .00 
H+NO+M<=>HNO+M                           8.950E+19   -1.320     740.00 
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
HNO+O<=>NO+OH                            2.500E+13     .000        .00 
HNO+H<=>H2+NO                            4.500E+11     .720     660.00 
HNO+OH<=>NO+H2O                          1.300E+07    1.900    -950.00 
HNO+O2<=>HO2+NO                          1.000E+13     .000   13000.00 
CN+O<=>CO+N                              7.700E+13     .000        .00  
CN+OH<=>NCO+H                            4.000E+13     .000        .00 
CN+H2O<=>HCN+OH                          8.000E+12     .000    7460.00 
CN+O2<=>NCO+O                            6.140E+12     .000    -440.00 
CN+H2<=>HCN+H                            2.100E+13     .000    4710.00 
NCO+O<=>NO+CO                            2.350E+13     .000        .00 
NCO+H<=>NH+CO                            5.400E+13     .000        .00 
NCO+OH<=>NO+H+CO                         2.500E+12     .000        .00 
NCO+N<=>N2+CO                            2.000E+13     .000        .00 
NCO+O2<=>NO+CO2                          2.000E+12     .000   20000.00 
NCO+M<=>N+CO+M                           8.800E+16    -.500   48000.00 
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
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NCO+NO<=>N2O+CO                          2.850E+17   -1.520     740.00 
NCO+NO<=>N2+CO2                          5.700E+18   -2.000     800.00 
HCN+M<=>H+CN+M                           1.040E+29   -3.300  126600.00 
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
HCN+O<=>NCO+H                            1.107E+04    2.640    4980.00 
HCN+O<=>NH+CO                            2.767E+03    2.640    4980.00 
HCN+O<=>CN+OH                            2.134E+09    1.580   26600.00 
HCN+OH<=>HOCN+H                          1.100E+06    2.030   13370.00 
HCN+OH<=>HNCO+H                          4.400E+03    2.260    6400.00 
HCN+OH<=>NH2+CO                          1.600E+02    2.560    9000.00 
H+HCN+M<=>H2CN+M                         1.400E+26   -3.400    1900.00 
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
H2CN+N<=>N2+CH2                          6.000E+13     .000     400.00 
C+N2<=>CN+N                              6.300E+13     .000   46020.00 
CH+N2<=>HCN+N                            2.857E+08    1.100   20400.00 
CH+N2(+M)<=>HCNN(+M)                     3.100E+12     .150        .00 
     LOW  /  1.300E+25   -3.160    740.00/    
     TROE/   .6670  235.00  2117.00  4536.00 /   
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ 
C2H6/3.00/   
CH2+N2<=>HCN+NH                          1.000E+13     .000   74000.00 
CH2(S)+N2<=>NH+HCN                       1.000E+11     .000   65000.00 
C+NO<=>CN+O                              1.900E+13     .000        .00  
C+NO<=>CO+N                              2.900E+13     .000        .00  
CH+NO<=>HCN+O                            5.000E+13     .000        .00 
CH+NO<=>H+NCO                            2.000E+13     .000        .00 
CH+NO<=>N+HCO                            3.000E+13     .000        .00 
CH2+NO<=>H+HNCO                          3.100E+17   -1.380    1270.00 
CH2+NO<=>OH+HCN                          2.900E+14    -.690     760.00 
CH2+NO<=>H+HCNO                          3.800E+13    -.360     580.00 
CH2(S)+NO<=>H+HNCO                       3.100E+17   -1.380    1270.00 
CH2(S)+NO<=>OH+HCN                       2.900E+14    -.690     760.00 
CH2(S)+NO<=>H+HCNO                       3.800E+13    -.360     580.00 
CH3+NO<=>HCN+H2O                         9.600E+13     .000   28800.00 
CH3+NO<=>H2CN+OH                         1.000E+12     .000   21750.00 
HCNN+O<=>CO+H+N2                         2.200E+13     .000        .00 
HCNN+O<=>HCN+NO                          2.000E+12     .000        .00 
HCNN+O2<=>O+HCO+N2                       1.200E+13     .000        .00 
HCNN+OH<=>H+HCO+N2                       1.200E+13     .000        .00 
HCNN+H<=>CH2+N2                          1.000E+14     .000        .00 
HNCO+O<=>NH+CO2                          9.800E+07    1.410    8500.00 
HNCO+O<=>HNO+CO                          1.500E+08    1.570   44000.00 
HNCO+O<=>NCO+OH                          2.200E+06    2.110   11400.00 
HNCO+H<=>NH2+CO                          2.250E+07    1.700    3800.00 
HNCO+H<=>H2+NCO                          1.050E+05    2.500   13300.00 
HNCO+OH<=>NCO+H2O                        4.650E+12     .000    6850.00 
HNCO+OH<=>NH2+CO2                        1.550E+12     .000    6850.00 
HNCO+M<=>NH+CO+M                         1.180E+16     .000   84720.00 
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/  
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C2H6/3.00/  
HCNO+H<=>H+HNCO                          2.100E+15    -.690    2850.00 
HCNO+H<=>OH+HCN                          2.700E+11     .180    2120.00 
HCNO+H<=>NH2+CO                          1.700E+14    -.750    2890.00 
HOCN+H<=>H+HNCO                          2.000E+07    2.000    2000.00 
HCCO+NO<=>HCNO+CO                        2.350E+13     .000        .00 
CH3+N<=>H2CN+H                           6.100E+14    -.310     290.00 
CH3+N<=>HCN+H2                           3.700E+12     .150     -90.00 
NH3+H<=>NH2+H2                           5.400E+05    2.400    9915.00 
NH3+OH<=>NH2+H2O                         5.000E+07    1.600     955.00 
NH3+O<=>NH2+OH                           9.400E+06    1.940    6460.00 
END       

 
Note the fuel was CH4. The NOx was computed as the sum of NO, N2O and NO2 or  
 

NOxdt
dNO

dt
OdN

dt
dNO

dt
dNOx

τ
1*2 22 =






 ++= .  (21) 
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APPENDIX D 
 
Methane Results 
 Figures 21 and 22 are parity plots showing the strength of the lean and rich 
equilibrium correlations for CO.  These charts show very strong CO equilibrium 
correlations for methane, similar to those for the Jet-A fuel.  

The chemical kinetic time correlations developed for methane may be found in 
Table (4). Parity plots for the chemical kinetic times are given in Figures 23-28.  Values 
on the x-axis represent chemical kinetic times in milliseconds calculated in GLSENS 
using the complete mechanism, and values on the y-axis represent chemical kinetic times 
calculated by this report�s simple model. The fuel and NOx parity plots show a fairly tight 
fitting curve, with a minimal amount of scattering. The CO parity plots show a larger 
amount of scattering. However, the resulting correlations are still believed to be useful in 
calculating the chemical kinetic times at various sets of conditions.  
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APPENDIX E 
 
GLSENS Modification 
The following lines were added to the GLSENS code for calculation of the chemical 
kinetic times.   
 
C   These lines were added to GLSENS.F in subroutine OUT2 at line  
C     7057 
C    jetgl.f  7/30/03 for the Jet-A fuel 
      timil=time*1.e+03 
420   foa=eratio*0.068 
      tn=timil 
      trr=sngl(T) 
      if(foa.ge.0.068)goto 419 
      ccoe=4.43*(FOA)**(1.69)*P**0.513*exp(-31840./Trr) 
      goto 418 
  419 ccoe=5.85E-3*foa**3.82*P**0.961*exp(-969./Trr) 
C  Initialize variables at time = 0.   
  418 if(time.gt.0.)goto 427  
      write(10,1) 
    1 format(' nc   P atm   T K   f/a   jeta fuel   co       nox 
     3coequil  time') 
C     calculate the initial conditions for the averaging 
      nc=1    
      nco=1 
      t0=0. 
      stco=0. 
      areaf=0. 
      tauco=0. 
      tauf=0. 
      tauno=0. 
      areaco=0. 
      areano=0. 
      atauf=0. 
      atauco=0. 
      atauno=0. 
  427 continue 
C  Allow a startup time for the integration.  Begin averaging at 
C  nc=15 
      if(nc.eq.15)t0=timil 
C  Species number from the mechanism are CO=9, NO=12, C12H23=16 
      cco=sngl(dabs(prc(9))) 
      cnox=sngl(dabs(prc(12))) 
      cfuel=sngl(dabs(prc(16))) 
      if(nc/1*1.eq.nc)write(10,423)nc,P,T,foa,cfuel,cco,cnox,ccoe, 
     1timil 
  423 format(i6,f6.1,f8.1,1p,8e10.3) 
C     calculate the initial conditions for the averaging 
      if(nc.lt.15)goto 1500 
C The average kinetic times for the fuel, CO and NO are atauf, 
C  atauco, and atauno 
      if(W(16).ne.0.)tauf=-sngl(prc(16)/W(16))*1.e3 
      if(nc.eq.15)tstart=timil 
      if(nc.eq.15)t0=timil 
      if(nc.eq.15)taufo=-sngl(prc(16)/W(16))*1.e3 
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      if(tn.eq.t0)goto 424 
      if(tauf.le.0.)goto 424 
      if(cfuel.lt.1.e-14)goto 424 
      areaf=areaf+(1./taufo+1./tauf)/2.*(tn-t0) 
      timet=timil-tstart 
      atauf=timet/areaf 
      if(nc/1*1.eq.nc)write(11,423)nc,P,T,foa,cfuel,tauf,atauf, 
     1timil 
      taufo=tauf 
  424 if(nc.eq.15)tauni=sngl(1.D0/(W(12)))*1.e3 
      tauno=sngl(1.D0/(W(12)))*1.e3 
      if(t0.eq.tn)goto 339 
      if(tauno.lt.0.)go to 339 
      areano=areano+(1./tauno+1./tauni)/2.*(tn-t0) 
      atauno=timet/areano 
      tauni=tauno 
      if((nc/1*1).eq.nc)write(13,501)nc,P,T,foa,cnox,tauno, 
     1atauno,timil,eratio 
  339 rfuel=12.*cfuel/tauf*1.e3 
C Since co goes to co2,  use the rate of reaction to CO2 (species  
C     10) for the rate of conversion of CO 
      denm=-sngl(w(10)) 
C  If we want to average only after the peak, remove the comment C  
C     from the next line. 
C     if(denm.gt.0.)goto 503 
      if(stco.eq.0.)tauci=-(sngl(dabs(prc(9)))-ccoe)/denm*1.e3 
      tauco=-(sngl(dabs(prc(9)))-ccoe)/denm*1.e3 
C     w(10) = CO2 
      if (W(10).lt.0.)next=.true. 
      if(t0.eq.tn) goto 504 
      if(tauci.le.0.)goto 503 
      if(tauco.le.0.)goto 503 
      if(stco.eq.0.)stco=timil 
      timco=timil-stco 
      areaco=areaco+(1./tauco+1./tauci)/2.*(tn-t0) 
      atauco=timco/areaco 
      tauci=tauco 
      nco=nco+1 
  338 format(i7,1e12.3,7e12.4) 
      if(nc.lt.100)write(15,338)nc,timil,cco,ccoe,w(9),w(10), 
     1tauco 
      rfuel2=12.*sngl(w(16)) 
      dcodt=-((sngl(prc(9)))-ccoe)/tauco*1.e3 
  503 if((nc/1*1).eq.nc)write(12,423)nc,P,T,foa,cco,ccoe,tauco, 
     1atauco,timil 
  504 t0=tn 
  431 format (f12.2,3e13.5,f8.3,f8.3,e13.5) 
      IF(NCO.GT.300)NEXT=.TRUE. 
      if(timil.gt.1000.)next=.true. 
  501 format(i4,f7.4,f7.1,5e11.3,f6.3) 
 1500 nc=nc+1 
      if(nc.gt.300)next=.true. 
C     if (nc/50*50.ne.nc)go to 502 
      DO 435 IJ=1,MAX 
      IF (IJ.GT.LS.OR.IJ.GT.LR) GO TO 435 
      TCON(IJ)=SNGL(PRC(IJ)/W(IJ)) 
      FMOL=SNGL(SIGMA(IJ)*MIXMW) 
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      WRITE (LWRITE,175) DSPNM(IJ),PRC(IJ),FMOL,W(IJ) 
      GO TO 435 
430   WRITE (LWRITE,185) IJ,RATE(IJ),PRX(IJ),EQUIL(IJ) 
C430   continue 
435   CONTINUE 
C  The variables atauf, atauco and atauno are saved in a common 
C  block and printed in main after the completion of the complete  
C  time integration as ln(foa), ln(p), 1./T, Ln(atauf), 
C  ln(atauco), and ln(atauno) for processing by Excel regression 
 
502   IF (WELSTR) GO TO 446 
C     WRITE (LWRITE,440) DSNAM(1),FF(LSP1),DSNAM(2),FF(LSP2) 
440   FORMAT (/,4X,'DERIVATIVES (CGS UNITS): ',2(A8,4X,1PE12.5,4X)) 
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Figure 2 
Jet A
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Figure 3 COeq Correlation
Jet-A1 Fuel
f/a <0.068

Coeq= 4.43(f/a)1.69(P)0.513(exp[-31840/T])
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Figure 4 COeq Correlation
Jet-A1 Fuel
f/a ≥ 0.068

Coeq= 5.85e-3(f/a)3.82(P)0.961(exp[-969/T])
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Figure 5 Jet A Fuel tau Parity 
(lean 7/29)
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Figure 6 Jet A Fuel Tau Parity 
(rich 7/29)
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Figure 7
Jet-A CO Tau Parity

 (lean 8/18)

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

0.1 1 10 100 1000 10000

Tau (milliseconds)

Ta
u 

ca
lc

 (m
ill

is
ec

on
ds

)

 

N
A

SA
/T

M
—

2003-212702
39



 
 
 
 

Figure 8
Jet-A CO Tau Parity 

(rich 8/18)
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Figure 9 Jet A Nox Tau Parity
 (lean 8/5)
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Figure 10 Jet A NOx Tau Parity 
(rich 8/5)
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Figure 11 
Jet A Fuel
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Figure 12
Jet-A CO Tau Correlation
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Figure 13
Jet A Fuel NOx
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Figure 14
Jet A Fuel

 (phi=0.5, T=1500K, P=1atm)
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Figure 15
Jet A Fuel 

(phi=0.5, T=2500K, P=1atm)
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Figure 16
Jet A Fuel 

(Phi=1.0, T=1500K,P=1atm)
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Figure 17
Jet A Fuel 

(Phi=1.0, T=2500K, P=1atm)
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Figure 18
Jet A Fuel 

(phi=1.5, T=1500K, P=1atm)
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Figure 19
Jet A Fuel 

(phi=1.5, T=2500K, P=1 atm)
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Figure 20
autoignition Jet-a  tau*P vs 1/T
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Figure 21
COeq Correlation
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Figure 22
COeq Correlation
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Figure 23
CH4 Fuel Tau Parity 

(lean 7/31 cut off data)
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Figure 24
CH4 Fuel Tau Parity 

(rich, 7/31,cutoff data)
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Figure 25
CH4 CO Tau Parity 

(lean 7/28  CO2 rates)

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01

tau

ta
u 

(c
al

c)

 

N
A

SA
/T

M
—

2003-212702
57



 
 
 
 

Figure 26
CH4 CO Tau Parity 

(rich, 7/31, CO2 rates)
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Figure 27
CH4 NOx Tau Parity 

(lean 7/31)
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Figure28
CH4 NOx Tau Parity 

(rich 7/31)
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